Home
Class 10
MATHS
Solve for x and y in the following quest...

Solve for x and y in the following question.
`(2)/(x+2y) + (1)/(2x-y)+ (5)/(9)= 0, (9)/(x+2y)+ (6)/(2x-y)+4= 0`

A

`x= 1, y= 2`

B

`x= 2, y= 1`

C

`x= 2, y= (1)/(2)`

D

`x= (1)/(2), y= 2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given equations for \( x \) and \( y \): 1. **Write the equations**: \[ \frac{2}{x + 2y} + \frac{1}{2x - y} + \frac{5}{9} = 0 \] \[ \frac{9}{x + 2y} + \frac{6}{2x - y} + 4 = 0 \] 2. **Rearrange the equations**: For the first equation: \[ \frac{2}{x + 2y} + \frac{1}{2x - y} = -\frac{5}{9} \] For the second equation: \[ \frac{9}{x + 2y} + \frac{6}{2x - y} = -4 \] 3. **Substitute variables**: Let: \[ A = \frac{1}{x + 2y}, \quad B = \frac{1}{2x - y} \] Then the equations become: \[ 2A + B = -\frac{5}{9} \quad \text{(1)} \] \[ 9A + 6B = -4 \quad \text{(2)} \] 4. **Eliminate one variable**: To eliminate \( B \), we can multiply equation (1) by 6: \[ 12A + 6B = -\frac{30}{9} \quad \text{(which simplifies to } -\frac{10}{3}\text{)} \] Now we have: \[ 12A + 6B = -\frac{10}{3} \quad \text{(3)} \] \[ 9A + 6B = -4 \quad \text{(2)} \] 5. **Subtract equation (2) from equation (3)**: \[ (12A + 6B) - (9A + 6B) = -\frac{10}{3} + 4 \] This simplifies to: \[ 3A = -\frac{10}{3} + \frac{12}{3} \] \[ 3A = \frac{2}{3} \] \[ A = \frac{2}{9} \] 6. **Substitute \( A \) back to find \( B \)**: Substitute \( A \) into equation (1): \[ 2\left(\frac{2}{9}\right) + B = -\frac{5}{9} \] \[ \frac{4}{9} + B = -\frac{5}{9} \] \[ B = -\frac{5}{9} - \frac{4}{9} = -\frac{9}{9} = -1 \] 7. **Substitute back to find \( x \) and \( y \)**: Recall: \[ A = \frac{1}{x + 2y} = \frac{2}{9} \quad \Rightarrow \quad x + 2y = \frac{9}{2} \quad \text{(4)} \] \[ B = \frac{1}{2x - y} = -1 \quad \Rightarrow \quad 2x - y = -1 \quad \text{(5)} \] 8. **Solve the system of equations (4) and (5)**: From equation (5): \[ y = 2x + 1 \quad \text{(6)} \] Substitute (6) into (4): \[ x + 2(2x + 1) = \frac{9}{2} \] \[ x + 4x + 2 = \frac{9}{2} \] \[ 5x + 2 = \frac{9}{2} \] Multiply through by 2 to eliminate the fraction: \[ 10x + 4 = 9 \] \[ 10x = 5 \quad \Rightarrow \quad x = \frac{1}{2} \] 9. **Find \( y \)**: Substitute \( x = \frac{1}{2} \) back into equation (6): \[ y = 2\left(\frac{1}{2}\right) + 1 = 1 + 1 = 2 \] 10. **Final solution**: The solution is: \[ x = \frac{1}{2}, \quad y = 2 \]
Promotional Banner

Topper's Solved these Questions

  • PAIR OF LINEAR EQUATIONS IN TWO VARIABLES

    SCIENCE OLYMPIAD FOUNDATION |Exercise Everyday Mathematics|4 Videos
  • LOGICAL REASONING

    SCIENCE OLYMPIAD FOUNDATION |Exercise NON-VERBAL REASONING |10 Videos
  • POLYNOMIALS

    SCIENCE OLYMPIAD FOUNDATION |Exercise ACHIEVERS SECTION ( HOTS) |3 Videos

Similar Questions

Explore conceptually related problems

solve: (2) / (2x + y) - (1) / (x-2y) + (5) / (9) = 0 and (9) / (2x + y) - (6) / (x-2y ) + 4 = 0

Solve the following system of equations: (3)/(x+y)+(2)/(x-y)=2,quad (9)/(x+y)-(4)/(x-y)=1

Solve : (3)/(x + y ) + ( 2)/(x - y ) = 2 and (9)/(x + y ) - ( 4)/(x - y) = 1 .

Solve the following system of equations: (10)/(x+y)+(2)/(x-y)=4,quad (15)/(x+y)-(9)/(x-y)=-2

Solve the following pair of equations: x+y= 7 4/(2x- 5y)= 1, 2x-5y ne 0

Solve the following system of equations: (1)/(2x)-(1)/(y)=-1(1)/(x)+(1)/(2y)=9, where x!=0,y!=0

(3) / (x) - (1) / (y) + 9 = 0 (2) / (x) + (3) / (y) = 5, (! = 0, y! = 0)

Find each of the following products: (i) (x - 4)(x - 4) (ii) (2x - 3y)(2x - 3y) (iii) ((3)/(4) x - (5)/(6) y) ((3)/(4)x - (5)/(6) y) (iv) (x - (3)/(x)) (x - (3)/(x)) (v) ((1)/(3) x^(2) - 9) ((1)/(3) x^(2) - 9) (vi) ((1)/(2) y^(2) - (1)/(3) y) ((1)/(2) y^(2) - (1)/(3) y)

Solve for x and y - 2x+3y-8=0 3x+4y-5=0