Home
Class 10
MATHS
Roots of the quadratic equation x^(2) + ...

Roots of the quadratic equation `x^(2) + x- (a+1) (a+2)= 0` are ____

A

`-(a+1), (a+2)`

B

`(a+1), -(a+2)`

C

`(a+1), (a+2)`

D

`-(a+1), -(a+2)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the roots of the quadratic equation \( x^2 + x - (a+1)(a+2) = 0 \), we will follow these steps: ### Step 1: Identify coefficients The given equation is in the standard form of a quadratic equation \( ax^2 + bx + c = 0 \). Here, we can identify: - \( a = 1 \) - \( b = 1 \) - \( c = -(a+1)(a+2) \) ### Step 2: Write the quadratic formula The quadratic formula to find the roots of the equation is given by: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] ### Step 3: Substitute the values of \( a \), \( b \), and \( c \) Substituting the identified values into the quadratic formula: \[ x = \frac{-1 \pm \sqrt{1^2 - 4 \cdot 1 \cdot (-(a+1)(a+2))}}{2 \cdot 1} \] ### Step 4: Simplify the expression under the square root Calculate \( b^2 - 4ac \): \[ b^2 - 4ac = 1 + 4(a+1)(a+2) \] Now, expand \( 4(a+1)(a+2) \): \[ 4(a+1)(a+2) = 4(a^2 + 3a + 2) = 4a^2 + 12a + 8 \] Thus, \[ b^2 - 4ac = 1 + 4a^2 + 12a + 8 = 4a^2 + 12a + 9 \] ### Step 5: Substitute back into the quadratic formula Now, substitute back into the formula: \[ x = \frac{-1 \pm \sqrt{4a^2 + 12a + 9}}{2} \] ### Step 6: Factor the expression under the square root Notice that \( 4a^2 + 12a + 9 \) can be factored: \[ 4a^2 + 12a + 9 = (2a + 3)^2 \] Thus, we can rewrite the equation as: \[ x = \frac{-1 \pm (2a + 3)}{2} \] ### Step 7: Solve for the two possible values of \( x \) Now, we can find the two roots: 1. For the positive case: \[ x_1 = \frac{-1 + (2a + 3)}{2} = \frac{2a + 2}{2} = a + 1 \] 2. For the negative case: \[ x_2 = \frac{-1 - (2a + 3)}{2} = \frac{-2a - 4}{2} = -a - 2 \] ### Final Result The roots of the quadratic equation \( x^2 + x - (a+1)(a+2) = 0 \) are: \[ x = a + 1 \quad \text{and} \quad x = -a - 2 \] ---
Promotional Banner

Topper's Solved these Questions

  • QUADRATIC EQUATIONS

    SCIENCE OLYMPIAD FOUNDATION |Exercise Everyday Mathematics|4 Videos
  • QUADRATIC EQUATIONS

    SCIENCE OLYMPIAD FOUNDATION |Exercise Achievers Section (HOTS)|3 Videos
  • PROBABILITY

    SCIENCE OLYMPIAD FOUNDATION |Exercise ACHIEVERS SECTION (HOTS)|3 Videos
  • REAL NUMBERS

    SCIENCE OLYMPIAD FOUNDATION |Exercise EVERYDAY MATHEMATICS |7 Videos

Similar Questions

Explore conceptually related problems

Root of the quadratic equation x^(2)+6x-2=0

Roots of quadratic equation x^(2)-4x+3=0 are

Value of the roots of the quadratic equation x^(2) - x - 6 = 0 are …….. .

The roots of the quadratic equation 2x^(2)-x-6=0 are

Roots of Quadratic equation x ^(2) - 7x=0 will be

The roots of the quadratic equation 3x^2 - 5x + 2 = 0 are

one root of quadratic equation 14x^(2)-x-3=0

The roots of the quadratic equation x^2 + 8x + 12 = 0 are