Home
Class 10
MATHS
In a cyclic quadrilateral ABCD, angleA=(...

In a cyclic quadrilateral ABCD, `angleA=(x+2)^(@), angleB=(y+3)^(@), angleC=(3y+8)^(@) and angleD=(4x-8)^(@)`. Find the smallest and the largest angle.

A

`48^(@), 143^(@)`

B

`37^(@), 132^(@)`

C

`37^(@), 143^(@)`

D

`20^(@), 132^(@)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to use the property of cyclic quadrilaterals which states that the sum of the opposite angles is 180 degrees. Therefore, we can set up the following equations based on the angles given: 1. **Write down the angles:** - Angle A = \( (x + 2)^\circ \) - Angle B = \( (y + 3)^\circ \) - Angle C = \( (3y + 8)^\circ \) - Angle D = \( (4x - 8)^\circ \) 2. **Set up the equations using the property of cyclic quadrilaterals:** - From the property, we have: \[ \text{Angle A} + \text{Angle C} = 180^\circ \] \[ \text{Angle B} + \text{Angle D} = 180^\circ \] 3. **Substitute the angles into the equations:** - For Angle A and Angle C: \[ (x + 2) + (3y + 8) = 180 \] Simplifying this gives: \[ x + 3y + 10 = 180 \] \[ x + 3y = 170 \quad \text{(Equation 1)} \] - For Angle B and Angle D: \[ (y + 3) + (4x - 8) = 180 \] Simplifying this gives: \[ 4x + y - 5 = 180 \] \[ 4x + y = 185 \quad \text{(Equation 2)} \] 4. **Now we have a system of equations:** - Equation 1: \( x + 3y = 170 \) - Equation 2: \( 4x + y = 185 \) 5. **Solve the system of equations:** - From Equation 1, express \( x \) in terms of \( y \): \[ x = 170 - 3y \] - Substitute this expression for \( x \) into Equation 2: \[ 4(170 - 3y) + y = 185 \] \[ 680 - 12y + y = 185 \] \[ 680 - 11y = 185 \] \[ -11y = 185 - 680 \] \[ -11y = -495 \] \[ y = 45 \] 6. **Substitute \( y \) back to find \( x \):** - Substitute \( y = 45 \) into Equation 1: \[ x + 3(45) = 170 \] \[ x + 135 = 170 \] \[ x = 35 \] 7. **Now, calculate the angles:** - Angle A = \( x + 2 = 35 + 2 = 37^\circ \) - Angle B = \( y + 3 = 45 + 3 = 48^\circ \) - Angle C = \( 3y + 8 = 3(45) + 8 = 135 + 8 = 143^\circ \) - Angle D = \( 4x - 8 = 4(35) - 8 = 140 - 8 = 132^\circ \) 8. **Identify the smallest and largest angles:** - The angles are: - Angle A = \( 37^\circ \) - Angle B = \( 48^\circ \) - Angle C = \( 143^\circ \) - Angle D = \( 132^\circ \) - The smallest angle is \( 37^\circ \) (Angle A) and the largest angle is \( 143^\circ \) (Angle C). ### Final Answer: - **Smallest Angle:** \( 37^\circ \) - **Largest Angle:** \( 143^\circ \)
Promotional Banner

Topper's Solved these Questions

  • IMO QUESTION PAPER 2016 SET B

    SCIENCE OLYMPIAD FOUNDATION |Exercise EVERYDAY MATHEMATICS|10 Videos
  • IMO QUESTION PAPER 2016 SET B

    SCIENCE OLYMPIAD FOUNDATION |Exercise ACHIEVERS SECTION|5 Videos
  • IMO QUESTION PAPER 2016 SET A

    SCIENCE OLYMPIAD FOUNDATION |Exercise ACHIEVERS SECTION|5 Videos
  • IMO QUESTION PAPER 2017 SET A

    SCIENCE OLYMPIAD FOUNDATION |Exercise Achievers Section |5 Videos

Similar Questions

Explore conceptually related problems

The angles of a cyclic quadrilateral ABCD are angleA=(6x+10)^(@), angleB=(5x)^(@), angle C =(x+y)^(@) and angle D = (3y-10)^(@) .

ABCD is a cyclic quadrilateral such that angleA=90^(@),angleB=70^(@),angleC=95^(@) and angleD=105^(@) .

If ABCD is a cyclic quadrilateral with angleA = 50^(@) , angleB = 80^(@) , then angleC and angleD are

In quadrilateral ABCD , angleA=100^(@),angleB=70^(@)andangleC:angleD=8:11,"then find "angleD.

In a cyclic quadrilateral ABCD ,/_A=(2x+4)^(@),/_B=(x+10)^(@),/_C=(4y-4) and /_D=(5y+5)^(@). Find the values of x and y hence find all the angles.

In a quadrilateral ABCD, angleA + angleC = 180^(@) , then angleB + angleD is equal to

In a DeltaABC, angleA = x^(@), angleB = (3x - 2)^(@) , also angleC - angleB = 9^(@) , find the three angles.

In a cyclic quadrilateral ABCD, angleB=(5x+40)^@ and angleD=(8x+23)^@ , then find the measures of angle B and angle D .