Home
Class 10
MATHS
Select the INCORRECT match....

Select the INCORRECT match.

A

`cos^(2)theta+(1)/(1+cot^(2)theta)=1`

B

`(1+tan^(2)theta)(1+sintheta)(1-sintheta)=1`

C

`(tantheta+sintheta)/(tantheta-sintheta)=(sectheta-1)/(sectheta+1)`

D

`(sin^(3)theta+cos^(3)theta)/(sintheta+costheta)+sinthetacostheta=1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the question of selecting the INCORRECT match from the given options, we will analyze each option step by step. ### Step-by-Step Solution: **Step 1: Analyze Option 1** - The expression is \( \cos^2 \theta + \frac{1}{1 + \cot^2 \theta} \). - We know that \( \cot^2 \theta = \frac{\cos^2 \theta}{\sin^2 \theta} \). - Therefore, \( 1 + \cot^2 \theta = 1 + \frac{\cos^2 \theta}{\sin^2 \theta} = \frac{\sin^2 \theta + \cos^2 \theta}{\sin^2 \theta} = \frac{1}{\sin^2 \theta} \) (using \( \sin^2 \theta + \cos^2 \theta = 1 \)). - Thus, \( \frac{1}{1 + \cot^2 \theta} = \sin^2 \theta \). - Now, substituting back, we have \( \cos^2 \theta + \sin^2 \theta = 1 \). - **Conclusion**: Option 1 is correct. **Step 2: Analyze Option 2** - The expression is \( 1 + \tan^2 \theta \). - We know that \( \tan^2 \theta = \frac{\sin^2 \theta}{\cos^2 \theta} \). - Therefore, \( 1 + \tan^2 \theta = 1 + \frac{\sin^2 \theta}{\cos^2 \theta} = \frac{\cos^2 \theta + \sin^2 \theta}{\cos^2 \theta} = \frac{1}{\cos^2 \theta} = \sec^2 \theta \). - **Conclusion**: Option 2 is correct. **Step 3: Analyze Option 3** - The expression is \( \tan \theta + \sin \theta \). - We know that \( \tan \theta = \frac{\sin \theta}{\cos \theta} \). - Therefore, \( \tan \theta + \sin \theta = \frac{\sin \theta}{\cos \theta} + \sin \theta = \frac{\sin \theta + \sin \theta \cos \theta}{\cos \theta} = \frac{\sin \theta (1 + \cos \theta)}{\cos \theta} \). - This does not simplify to a standard identity. - **Conclusion**: Option 3 is incorrect. **Step 4: Analyze Option 4** - The expression is \( \frac{\sin^3 \theta + \cos^3 \theta}{\sin \theta + \cos \theta} \). - We can apply the identity for the sum of cubes: \( a^3 + b^3 = (a + b)(a^2 - ab + b^2) \). - Here, \( a = \sin \theta \) and \( b = \cos \theta \). - Thus, \( \sin^3 \theta + \cos^3 \theta = (\sin \theta + \cos \theta)(\sin^2 \theta - \sin \theta \cos \theta + \cos^2 \theta) \). - The denominator \( \sin \theta + \cos \theta \) cancels out, leaving \( \sin^2 \theta - \sin \theta \cos \theta + \cos^2 \theta = 1 - \sin \theta \cos \theta \). - **Conclusion**: Option 4 is correct. ### Final Conclusion: - The incorrect match is **Option 3**.
Promotional Banner

Topper's Solved these Questions

  • IMO QUESTION PAPER 2016 SET B

    SCIENCE OLYMPIAD FOUNDATION |Exercise EVERYDAY MATHEMATICS|10 Videos
  • IMO QUESTION PAPER 2016 SET B

    SCIENCE OLYMPIAD FOUNDATION |Exercise ACHIEVERS SECTION|5 Videos
  • IMO QUESTION PAPER 2016 SET A

    SCIENCE OLYMPIAD FOUNDATION |Exercise ACHIEVERS SECTION|5 Videos
  • IMO QUESTION PAPER 2017 SET A

    SCIENCE OLYMPIAD FOUNDATION |Exercise Achievers Section |5 Videos

Similar Questions

Explore conceptually related problems

Select an incorrect match:

Select an incorrect match.

Select an incorrect match:

Select an incorrect match:

Select an incorrect match.

Select in incorrect match

Select an incorrect match