Home
Class 10
MATHS
In the given figure, D is the midpoint o...

In the given figure, D is the midpoint of side BC and `AE bot BC`. If `BC=a, AC =b, AB= c, ED =x AD=p and AE =h` prove that
`(i) b^(2)=p^(2)+ax +(a^(2))/(4)`
(ii) `c^(2)=p^(2)-ax+(a^(2))/(4)`
(iii) `(b^(2)+c^(2))=2p^(2)+(1)/(2)a^(2)`
`(iv) (b^(2)-c^(2))=2ax`.

A

`{:(P,Q,R),(a^(2)x,a^(2)//2,2p^(2)):}`

B

`{:(P,Q,R),(ax,a^(2)//4,4p^(2)):}`

C

`{:(P,Q,R),(ax,a^(2)//4,2p^(2)):}`

D

`{:(P,Q,R),(a^(2)x,a^(2)//2,2p):}`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • IMO QUESTION PAPER 2017 SET A

    SCIENCE OLYMPIAD FOUNDATION |Exercise Everyday Mathematics |10 Videos
  • IMO QUESTION PAPER 2016 SET B

    SCIENCE OLYMPIAD FOUNDATION |Exercise ACHIEVERS SECTION|5 Videos
  • IMO QUESTION PAPER 2017 SET-B

    SCIENCE OLYMPIAD FOUNDATION |Exercise Achievers Section|5 Videos

Similar Questions

Explore conceptually related problems

In Fig. 4.220, D is the mid-point of side B C and A E_|_B C . If B C=a , A C=b , A B=c , E D=x , A D=p and A E=p and A E=h , prove that: (FIGURE) b^2=p^2+a x+(a^2)/4 (ii) c^2=p^2-a x+(a^2)/4 (iii) b^2+c^2=2 p^2+(a^2)/2

If a, b, c are in A.P., then prove that : (i) ab+bc=2b^(2) (ii) (a-c)^(2)=4(b^(2)-ac) (iii) a^(2)+c^(2)+4ca=2(ab+bc+ca).

In Delta ABC , D is the midpoint of BC and AE bot BC . If AC gtAB , show that AB^(2)=AD^(2)-BC*DE+(1)/(4)BC^(2)

If a,b,c,d are in G.P.prove that: (i) quad (a^(2)-b^(2)),(b^(2)-c^(2)),(c^(2)-d^(2)) are in G.P. (i) (1)/(a^(2)+b^(2)),(1)/(b^(2)+c^(2)),(1)/(c^(2)+d^(2)) are in G.P.

In a triangle ABC,AC>AB,D is the mid- point of BC and AE perp BC .Prove that: (i) AB^(2)=AD^(2)-BCDE+(1)/(4)BC^(2)( (ii) AB^(2)+AC^(2)=2AD^(2)+(1)/(2)BC^(2)

(a+b+c)(a^(2)+b^(2)+c^(2)-ab-bc-ac)

In a triangle ABC, D is midpoint of side BC. If ACgtAB and AE_|_BC , then prove that AB^(2)=AD^(2)-BC.ED+(1)/(4)BC^(2)

If a,b,c and d are in G.P.show that (a^(2)+b^(2)+c^(2))(b^(2)+c^(2)+d^(2))=(ab+bc+cd)^(2)

If a,b,c are in G.P. , prove that the following are also in G.P, (i) a^(2),b^(2),c^(2) (ii) a^(3),b^(3),c^(3) (iii) a^(2)+b^(2),ab+bc,b^(2)+c^(2)

If (a^(2)-bc)/(a^(2) +bc) + (b^(2)-ac)/(b^(2) + ac) + (c^(2)-ab)/(c^(2)+ab)= 1 then find (a^(2))/(a^(2) + bc) + (b^(2))/(b^(2) + ac) + (c^(2))/(c^(2) +ab)= ?