Home
Class 10
MATHS
Simplify : ( sin^(3) theta + cos ^(3) th...

Simplify : `( sin^(3) theta + cos ^(3) theta )/( sin theta+ cos theta ) + sin theta cos theta `

A

0

B

1

C

`sin ^(2) theta - cos ^(2) theta `

D

`sin theta - cos theta `

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \(( \sin^3 \theta + \cos^3 \theta ) / ( \sin \theta + \cos \theta ) + \sin \theta \cos \theta\), we can follow these steps: ### Step 1: Apply the sum of cubes formula The sum of cubes can be factored using the formula: \[ A^3 + B^3 = (A + B)(A^2 - AB + B^2) \] In our case, let \(A = \sin \theta\) and \(B = \cos \theta\). Therefore: \[ \sin^3 \theta + \cos^3 \theta = (\sin \theta + \cos \theta)(\sin^2 \theta - \sin \theta \cos \theta + \cos^2 \theta) \] ### Step 2: Substitute the factorization into the expression Now we can substitute this back into our original expression: \[ \frac{\sin^3 \theta + \cos^3 \theta}{\sin \theta + \cos \theta} + \sin \theta \cos \theta = \frac{(\sin \theta + \cos \theta)(\sin^2 \theta - \sin \theta \cos \theta + \cos^2 \theta)}{\sin \theta + \cos \theta} + \sin \theta \cos \theta \] ### Step 3: Cancel out the common terms Since \(\sin \theta + \cos \theta\) is in both the numerator and denominator, we can cancel it out (assuming \(\sin \theta + \cos \theta \neq 0\)): \[ \sin^2 \theta - \sin \theta \cos \theta + \cos^2 \theta + \sin \theta \cos \theta \] ### Step 4: Simplify the expression Now, we know that \(\sin^2 \theta + \cos^2 \theta = 1\). Therefore: \[ 1 - \sin \theta \cos \theta + \sin \theta \cos \theta = 1 \] ### Final Result Thus, the simplified expression is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • IMO QUESTION PAPER 2018 SET A

    SCIENCE OLYMPIAD FOUNDATION |Exercise Everyday Mathematics |10 Videos
  • IMO QUESTION PAPER 2018 SET A

    SCIENCE OLYMPIAD FOUNDATION |Exercise Achievers section |5 Videos
  • IMO QUESTION PAPER 2017 SET-B

    SCIENCE OLYMPIAD FOUNDATION |Exercise Achievers Section|5 Videos
  • IMO QUESTION PAPER 2018 SET B

    SCIENCE OLYMPIAD FOUNDATION |Exercise ACHIEVERS SECTION|5 Videos

Similar Questions

Explore conceptually related problems

3. sin^(3)theta+cos^(3)theta=(sin theta+cos theta)(1-sin theta cos theta)

Prove the following identities: (sin^(3)theta+cos^(3)theta)/(sin theta+cos theta)+sin theta cos theta=1

If (sin theta+cos theta)/(sin theta-cos theta)=3 then sin^4 theta-cos^4 theta=

(sin theta+cos theta)(1-sin theta cos theta)=sin^3 theta+cos^3 theta

The value of (sin^3 theta + cos^3 theta)/(sin theta+ costheta)+((cos^3 theta - sin^3 theta))/(cos theta - sin theta) is

(sin theta-cos theta+1)/(sin theta+cos theta-1)=(1+sin theta)/(cos theta)

(sin ^ (3) theta + sin3 theta) / (sin theta) + (cos ^ (3) theta-cos3 theta) / (cos theta) =

Simplify: (sin8 theta cos theta-sin6 theta cos3 theta)/(cos2 theta cos theta-sin3 theta sin4 theta)

(sin 3theta)/(sin theta)-(cos 3theta)/(cos theta)=

Prove each of the following identities : (cos^(3) theta + sin^(3) theta)/(cos theta + sin theta ) + (cos^(3) theta - sin^(3) theta)/(cos theta - sin theta ) = 2