Home
Class 10
MATHS
Evaluate : tan 12^@ tan 38^@ tan 52^@ ta...

Evaluate : `tan 12^@ tan 38^@ tan 52^@ tan 60^@ tan 78^@`

A

`1/sqrt3`

B

`sqrt3`

C

2

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \( \tan 12^\circ \tan 38^\circ \tan 52^\circ \tan 60^\circ \tan 78^\circ \), we can use the properties of tangent and cotangent. ### Step-by-Step Solution: 1. **Identify Complementary Angles:** We know that \( \tan(90^\circ - \theta) = \cot(\theta) \). Therefore, we can rewrite some of the angles: - \( \tan 52^\circ = \tan(90^\circ - 38^\circ) = \cot 38^\circ \) - \( \tan 78^\circ = \tan(90^\circ - 12^\circ) = \cot 12^\circ \) 2. **Rewrite the Expression:** Substitute the complementary angles into the original expression: \[ \tan 12^\circ \tan 38^\circ \tan 52^\circ \tan 60^\circ \tan 78^\circ = \tan 12^\circ \tan 38^\circ \cot 38^\circ \tan 60^\circ \cot 12^\circ \] 3. **Use the Identity \( \tan \theta \cdot \cot \theta = 1 \):** We can now group the terms: \[ (\tan 12^\circ \cot 12^\circ) \cdot (\tan 38^\circ \cot 38^\circ) \cdot \tan 60^\circ \] Each of the products \( \tan \theta \cdot \cot \theta = 1 \): \[ 1 \cdot 1 \cdot \tan 60^\circ \] 4. **Evaluate \( \tan 60^\circ \):** We know that \( \tan 60^\circ = \sqrt{3} \). 5. **Final Calculation:** Therefore, the entire expression simplifies to: \[ 1 \cdot 1 \cdot \sqrt{3} = \sqrt{3} \] ### Final Answer: \[ \tan 12^\circ \tan 38^\circ \tan 52^\circ \tan 60^\circ \tan 78^\circ = \sqrt{3} \]
Promotional Banner

Topper's Solved these Questions

  • IMO QUESTION PAPER 2019 SET B

    SCIENCE OLYMPIAD FOUNDATION |Exercise EVERYDAY MATHEMATICS|10 Videos
  • IMO QUESTION PAPER 2019 SET B

    SCIENCE OLYMPIAD FOUNDATION |Exercise ACHIEVERS SECTION |5 Videos
  • IMO QUESTION PAPER 2019 SET A

    SCIENCE OLYMPIAD FOUNDATION |Exercise Achievers section|5 Videos
  • IMO QUESTION PAPER 2020 SET 1

    SCIENCE OLYMPIAD FOUNDATION |Exercise Achievers Section|5 Videos

Similar Questions

Explore conceptually related problems

Find the value of tan 1^@ tan 2^@ tan 3^@ ….tan 45^@ …..tan 88^@ tan 89^@

Evaluate : tan 35^(@) tan 60^(@) tan 30^(@) tan65 .

The value of tan 7^(@) tan 23^(@) tan39^(@) tan 60^(@) tan 51^(@) tan 67^(@) tan 83^(@) is

Find the value of (tan 42^@ + tan 18^@)/(1-tan 42^@ tan 18^@)+ tan 300^@

The value of tan 6^(@) tan 42^(@) tan 66^(@) tan 78^(@) is

What is the value of ( cosec (78^(@) - theta) - sec ( 12^(@) + theta) - tan (67^(@) + theta) + cot (23^(@) - theta) )/( tan 13^(@) tan 37^(@) tan 45^(@) tan 53^(@) tan 77^(@) ) ?