Home
Class 10
MATHS
Solve x^(2)+(sqrt(3)+sqrt(2))x+sqrt(6)=0...

Solve `x^(2)+(sqrt(3)+sqrt(2))x+sqrt(6)=0`
`(a) sqrt(3),sqrt(2)` ,
` (b) -sqrt(3),sqrt(2)`
`(c) sqrt(3),-sqrt(2)`
`(d) -sqrt(3),-sqrt(2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate : ( sqrt(3) + sqrt(2)) / ( sqrt(3) - sqrt(2) + ( sqrt(3) - sqrt(2)) / ( sqrt(3) + sqrt(2)

The value of sqrt(3-2sqrt(2)) is sqrt(2)-1(b)sqrt(2)+1(c)sqrt(3)-sqrt(2)(d)sqrt(3)+sqrt(2)

if a=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)),b=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2))

(sqrt(sqrt(3)+sqrt(2)) + sqrt(sqrt(3)-sqrt(2)))/sqrt(sqrt(3)+1)

(3sqrt(2)-2sqrt(3))/(3sqrt(2)+2sqrt(3))+(sqrt(12))/(sqrt(3)-sqrt(2))

solve for x sqrt(3)x^(2)-2sqrt(2)x-2sqrt(3)=0

( (sqrt(2)+i sqrt(3))+(sqrt(2)-i sqrt(3)) )/( (sqrt(3)+i sqrt(2))+(sqrt(3)-i sqrt(2)) )

By how much does sqrt(12)+sqrt(18) exceed sqrt(3)+sqrt(2)?sqrt(2)-4sqrt(3)(b)sqrt(3)+2sqrt(2)(c)2(sqrt(3)-sqrt(2))(d)3(sqrt(3)-sqrt(2))

If x=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)) and y=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)) find x^(2)+y^(2)

([(sqrt(2)+i sqrt(3))+(sqrt(2)-i sqrt(3))])/([(sqrt(3)+1sqrt(2))+(sqrt(3)-1sqrt(2))])