Home
Class 12
MATHS
cosx(dy)/(dx)=sinx...

`cosx(dy)/(dx)=sinx`

Promotional Banner

Similar Questions

Explore conceptually related problems

General solution of the differential equation (cosx)(dy)/(dx)+y.sinx=1 is

If y=sqrt(cosx+sqrt(cosx+sqrt(cosx+...tooo))), prove that (dy)/(dx)=(sinx)/(1-2y)

Find (dy)/(dx), y=(sinx)^(cosx)+(cosx)^(sinx)

If y=sqrt(cosx+sqrt(cosx+sqrt(cosx+\ dotto\ oo))) , prove that (dy)/(dx)=(sinx)/(1-2y) .

Solution of the differential equation (dy)/(dx)+y/x=sinx is a. x(y+cosx)=sinx+C b. x(y-cosx)=sinx+C c. x(y+cosx)=cos x+C d. None of these

If ((2+cosx)/(3+y))(dy)/(dx)+sinx=0 and y(0)=1 , then y((pi)/(3)) is equal to

Solve the following differential equation: (dy)/(dx)+y=cosx-sinx

If y=sqrt(sinx+y) , then (dy)/(dx)= (a) (sinx)/(2y-1) (b) (sinx)/(1-2y) (c) (cosx)/(1-2y) (d) (cosx)/(2y-1)

If y=sqrt(sinx+y) then (dy)/(dx)= (a) (sinx)/(2y-1) (b) (sinx)/(1-2y) (c) (cosx)/(1-2y) (d) (cosx)/(2y-1)

ysinx dy/dx=(sinx-y^2)cosx