Home
Class 12
MATHS
int x^(3)dx= (A) (x^(4))/(4)+k (B) 3x...

`int x^(3)dx=`
(A) `(x^(4))/(4)+k`
(B) `3x^(2)+k`
(C) `k+x^(4)`
(D) `k+(x^(3))/(4)`

Promotional Banner

Similar Questions

Explore conceptually related problems

int (x+ ( cos^(-1)3x )^(2))/(sqrt(1-9x ^(2)))dx = (1)/(k _(1)) ( sqrt(1-9x ^(2))+ (cos ^(-1) 3x )^(k_(2)))+c, then k _(1) ^(2)+k_(2)^(2)= (where C is an arbitrary constnat. )

If lim_(x to 1) (x^(3) - 1)/(x - 1) = lim_(x to k) (x^(4) - k^(4))/(x^(3) - k^(3)) , find the value of k.

If int x e^(kx^(2)) dx = ( 1)/( 4) e^(2x^(2)) + C , then the value of k is

If int((x^(2)-1)dx)/((x^(4)+3x^(2)+1)Tan^(-1)((x^(2)+1)/(x)))=klog|tan^(-1)""(x^(2)+1)/x|+c , then k is equal to

I=int (dx)/(""^(4)sqrt( (x-1) ^(3) (x+2)^(5)))=k ""^(4)sqrt((x-1)/(x+2))+C, then 'k is equal to:

Evaluate, lim_(x to 1) (x^(4)-1)/(x-1)=lim_(x to k) (x^(3)-k^(3))/(x^(2)-k^(2)) , then find the value of k.

If the function f(x)=x^2-k x+5 is increasing on [2,\ 4] , then (a) k in (2,\ oo) (b) k in (-oo,\ 2) (c) k in (4,\ oo) (d) k in (-oo,\ 4)

If Lim_(x to 1) (x^(4)-1)/(x-1)=Lim_(x to k) (x^(3)-k^(3))/(x^(2)-k^(2)) , find the value of k .

If int (2^(x))/(sqrt(1-4^(x))) dx = k sin ^(-1) (f(x)) + C then :

If lim_(x->oo)(x^2+3x+5)/(4x+1+x^k) exists then K (a) k =2 (b) k 2 (d) k >=2