Home
Class 8
MATHS
2^(2x)/2^(3x-4)=4^(-2)...

`2^(2x)/2^(3x-4)=4^(-2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

(2x-4)/(3x+2)=(-2)/(3)

If f(x)=2x^(6)+3x^(4)+4x^(2) , then f'(x) is

If x,y,zepsilonR then the value of |((2x^(x)+2^(-x))^(2),(2^(x)-2^(-x))^(2),1),((3x^(x)+3^(-x))^(2),(3^(x)-3^(-x))^(2),1),((4^(x)+4^(-x))^(2),(4^(x)-4^(-x))^(2),1)| is

Evaluate: lim_( x to 2) (x^(2)-4)/(x^(3)-4x^(2)+4x)

Evaluate: lim_(xto oo)(2x^(2)-2x-sin^(2)x)/(3x^(2)-4x+cos^(2)x)

(lim)_(xvecoo)(2. x^(1//2)+3. x^(1//3)+4. x^(1//4)++ndotx^(1//n))/((3x-4)^(1//2)+(3x-4)^(1-3)+(3x-4^)^(1//3)++(3x-4)^(1//n)) (here n in N ,ngeq2 ) is equal to 1 dot2/(sqrt(3)) 2. (sqrt(3))/2 3. 1/2 4. 1/(sqrt(3)) 5. 2

The equation (x^(2)+3x+4)^(2)+3(x^(2)+3x+4)+4=x has

The solution of the differential equation (dy)/(dx)+(x(x^(2)+3y^(2)))/(y(y^(2)+3x^(2)))=0 is (a) x^(4)+y^(4)+x^(2)y^(2)=c (b) x^(4)+y^(4)+3x^(2)y^(2)=c (c) x^(4)+y^(4)+6x^(2)y^(2)=c (d) x^(4)+y^(4)+9x^(2)y^(2)=c

Without expanding, show that the value of each of the determinants is zero: |[(2^x+2^(-x))^2, (2^x-2^(-1))^2, 1] , [(3^x+3^(-1))^2, (3^x-3^(-x))^2, 1] , [(4^x+4^(-x))^2, (4^x-4^(-x))^2, 1]|

Solve ((2x+3)(4-3x)^3(x-4))/((x-2)^2x^5)le0