Home
Class 11
MATHS
Find value of determinant of matrix A wh...

Find value of determinant of matrix A where
A = `[(1,1,1),(1,omega^2,omega),(1,omega,omega^2)]`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let omega = - (1)/(2) + i (sqrt3)/(2) , then the value of the determinant |(1,1,1),(1,-1- omega^(2),omega^(2)),(1,omega^(2),omega^(4))| , is

The value of det[[1,1,11,omega,omega^(2)1,omega^(2),omega]]

The inverse of the matrix A=|(1,1,1),(1,omega,omega^2),(1,omega^2,omega)|, where omega=e(2pii)/3, is

If omega is a complex cube root of unity then the matrix A = [(1, omega^(2),omega),(omega^(2),omega,1),(omega,1,omega^(2))] is a

Let omega=-(1)/(2)+i(sqrt(3))/(2). Then the value of the determinant det[[1,1,11,1,omega^(2)1,omega^(2),omega^(4)]]3 omega(omega-1)(C)3 omega^(2)(D)3 omega(1-omega)

If omega is cube root of unit, then find the value of determinant |(1,omega^3,omega^2), (omega^3,1,omega), (omega^2,omega,1)|.

Let omega=-(1)/(2)+i(sqrt(3))/(2), then value of the determinant [[1,1,11,-1,-omega^(2)omega^(2),omega^(2),omega]] is (a) 3 omega(b)3 omega(omega-1)3 omega^(2)(d)3 omega(1-omega)

If omegais an imaginary cube root of unity, then the value of the determinant |(1+omega,omega^2,-omega),(1+omega^2,omega,-omega^2),(omega+omega^2,omega,-omega^2)|