Home
Class 12
MATHS
If 2^x-2^y = 2^(x+y) , then dy/dx is...

If `2^x-2^y = 2^(x+y)` , then `dy/dx` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If x^(y) = 2^(x-y) , then (dy)/(dx) =?

If 2^(x) +2y =2^(x+y),then (dy)/(dx)=

If 2^x-2^y=2^(x+y) then dy/dx= (a) (2^x+2^y)/(2^x-2^y) (b) (2^x+2^y)/(1+2^(x+y)) (c) (2^(x-y))(1-2^y)/(2^x+1) (d) (2^x-2^y)/(2^x+2^y)

" If 2^(x)+2^(y)=x+y, then (dy)/(dx) is equal to "

If 2^(x)+2^(y)=2^(x+y) then find (dy)/(dx)

If x ^(2) + y ^(2) = sin ( x + y), then (dy)/(dx) =

2^x-2^y=2^(x+y) find dy/dx if x=y=2 (a) 3/5 (b) -3/5 (c) 2/5 (d) 1

If x^(2)+y^(2)=4, then y(dy)/(dx)+x is equal to