Home
Class 12
MATHS
tan^(-1)(1)/(2)+tan^(-1)(1)/(3)=(pi)/(4)...

`tan^(-1)(1)/(2)+tan^(-1)(1)/(3)=(pi)/(4)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : tan^(-1) 1 + tan^(-1) 2 + tan^(-1) 3= pi = 2(tan^(-1) 1 + tan^(-1)((1)/(2)) + tan^(-1)( (1)/(3)))

prove that: 2 tan ^(-1).(1)/(3) + tan^(-1).(1)/( 7) = (pi)/(4)

Statement 1: tan^(-1)((3)/(4))+tan^(-1)((1)/(7))=(pi)/(4) Statement 2: For x gt 0, Y gt 0 tan^(-1)((x)/(y))+tan^(-1)((y-x)/(y+x))=(pi)/(4)

Prove the following: 2\ tan^(-1)(3/4)-tan^(-1)((17)/(31))=pi/4

Prove the following: 4\ tan^(-1)(1/5)-tan^(-1)(1/(239))=pi/4

Prove the following: tan^(-1)1/7+2\ tan^(-1)1/3=pi/4

Prove that : tan^(-1)(1/2) + tan^(-1)(1/3) = tan^(-1)(3/5) + tan^(-1)(1/4) = pi/4

tan^(-1)((1)/(1+2))+tan^(-1)((1)/(1+6))+tan^(-1)(k)=tan^(-1)4 -(pi)/(4) then k is

Prove that: tan^(-1)(1/7)+tan^(-1)(1/(13))=tan^(-1)(2/9) tan^(-1)(1/2)+tan^(-1)(1/5)+tan^(-1)(1/8)=pi/4 tan^(-1)(3/4)+tan^(-1)(3/5)-tan^(-1)(8/19)=pi/4

The number of real values of x satisfying tan^-1(x/(1-x^2))+tan^-1 (1/x^3) =(3pi)/(4)