Home
Class 12
MATHS
(dy)/(dx)=(y)/(x){log((y)/(x))+1...

`(dy)/(dx)=(y)/(x){log((y)/(x))+1`

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve: (dy)/(dx)=e^(x+y) (ii) log((dy)/(dx))=a x+b y

Solve (dy)/(dx)+(y)/(x)=log x.

If x=y log(xy) , then prove that (dy)/(dx) = (y (x-y))/(x(x+y)) .

If x^(y) y^(x)=5 , then show that (dy)/(dx)= -(log y + (y)/(x))/(log x + (x)/(y))

The solution of (dy)/(dx)=(x+y-1)+(x+y)/(log(x+y)), is given by

If y=(x-1)log(x-1)-(x+1)log(x+1), prove : (dy)/(dx)=log((x-1)/(1+x))

If y=(x-1)log(x-1)-(x+1)log(x+1) , prove that (dy)/(dx)=log((x-1)/(1+x))

If y=a^x^a^x^...^(((((oo))))) , then prove that (dy)/(dx)=(y^2(log)_e y)/(x(1-y(log)_e x(log)_e y)

If y=a^x^a^x^...^(((((oo))))) , then prove that (dy)/(dx)=(y^2(log)_e y)/(x(1-y(log)_e x(log)_e y)

If x^y=e^(x-y), show that (dy)/(dx)=(logx)/({log(x e)}^2)