Home
Class 11
MATHS
The value of (a^4-a^2b^2)-:a^2 is:...

The value of `(a^4-a^2b^2)-:a^2` is:

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of (a+b)^(2) - (a-b)^(2) is

If (a)/(2b) = (c )/(d) = (e )/(3f) , then the value of (2a^(4)b^(2)+3a^(2)c^(2)-5e^(4)f)/(32b^(6)+12b^(2)d^(2)-405f^(5)) is

What is the value of {((a+b)^(2) - (a^(2) +b^(2)))/((a+b)^(2) - (a-b)^(2))}?

When a=3 , b=0 , c=-2 , find the value of : 1/2a^4 + 2/3b^2c^2 - 1/9a^2c^2 +c^3 .

If (a)/(b)=2, what is the value of (4b)/(a) ?

Find the value of : 3abc-2a^2+4b^3+ac given that a=-2,b=3 and c=-1

The maximum value of x^4e^ (-x^2) is (A) e^2 (B) e^(-2) (C) 12 e^(-2) (D) 4e^(-2)

If a,b,c are positive real numbers and 2a+b+3c=1 , then the maximum value of a^(4)b^(2)c^(2) is equal to

If a+2b+3c=4, then find the least value of a^2+b^2+c^2dot

If a+2b+3c=4, then find the least value of a^2+b^2+c^2dot