Home
Class 12
MATHS
int (e^sqrtx (x+e^sqrtx))/(sqrtx) dx...

`int (e^sqrtx (x+e^sqrtx))/(sqrtx) dx`

Promotional Banner

Similar Questions

Explore conceptually related problems

The integral I=int(e^(sqrtx)cos(e^(sqrtx)))/(sqrtx)dx=f(x)+c (where, c is the constant of integration) and f(ln((pi)/(4)))^(2)=sqrt2. Then, the number of solutions of f(x)=2e (AA x in R-{0}) is equal to

int(sqrt(1+sqrtx))/(sqrtx)dx=

int (cossqrtx)/(sqrtx)dx

Integrate : int (tan^4 sqrtx sec^2 sqrtx)/sqrtx dx.

f(x)=sqrtx-(1)/(sqrtx)

int(sec sqrtx)/(sqrtx)dx=

int((sqrtx+1)(x^(2)-sqrtx))/(xsqrtx+x+sqrtx)dx

inte^(sqrtx)dx

int(sqrtx)/(1+xsqrtx)dx-

int ((1+sqrtx)^2)/sqrtx dx=