Home
Class 12
PHYSICS
The dimensions of electric potential are...

The dimensions of electric potential are
(a)`[ML^(2)T^(-3)A^(-1)]`
(b)`[ML^(2)T^(-1)A^(-1)]`
(c)`[ML^(2)T^(-1)A^(-2)]`
(d)`[ML^(2)T^(-3)A^(-2)]`

Promotional Banner

Similar Questions

Explore conceptually related problems

Dimension of sqrt((in_(0))/(mu_(0))) are (A) [M L^(2) T^(-3) A^(-2)] (B) [M^(-1) L^(-2) T^(3) A^(2)] (C) [M^(2)L^(2)T^(-3) A^(2)] (D) [M^(-1) L^(2) T^(3) A^(2)]

Name the physical quantites whose dimensional formulae are as follows: (i) ML^(2)T^(-2)(ii) ML^(2)T^(-3) (iii) MT^(-2) (iv) ML^(-1)T^(-1)(v) ML^(-1)T^(-2) ,

Using method of dimensions, establish the relation among the given quantities. (a) The potential difference V across a conductor depends on current i flowing in it and resistance of conductor R . (b) The speed of light c can be expressed in terms of free space mu_(0) . The energy U stored in an inductor is function of inductance L and current i flowing through it. (d) The time constant tau to R - C circuit can be expressed in terms of resistance R and capacitance. C . Dimensional formulae: V : ML^(2) T^(-3) A^(-1). R: ML^(2) T^(-3) A^(-2) , in_(0) : M^(-1) L^(-3) T^(4) A^(2), mu_(0) : MLT^(-2) A^(2) , L : ML^(2) T^(-2) A^(-2), C : M^(-1) L^(-2) T^(4) A^(2)

Whose dimensions is ML^(2)T^(-1)

Match the physical quantities in column A with their dimensional formula expressed in column B {:(Column A,, ColumnB),((1) "Anguar Momentum",,(a)ML^(2)T^(-2)),((2)"Latent Heat",,(b)ML^(2)T^(-2)A^(-2)),((3)"Torque",,(c)ML^(2)T^(-1)),((4)"Capacitance",,(d)ML^(3)T^(-3)A^(-2)),((5)"Inductance",,(e)M^(-1)L^(-2)T^(4)A^(2)),("(Resistivity",,(f)ML^(2)T^(-2)A^(-1)),((7)"Magnetic",,(g)ML^(-1)T^(-2)),((8)"Magnetic",,(h)L^(2)T^(-2)):}

The dimension ML^-1T_2 can correspond to

The dimensions ML^-1T^-2 may correspond to

If energy (E),velocity (V) and time (T) are chosen as the fundamental quantities, then the dimensions of surface tension will be. (Surface tension=force/length) (A) EV^(-2)T^(-1) " " (B) EV^(-1)T^(-3) " " (C)E^(-2)V^(-1)T^(-3) " " (D)EV^(-2)T^(-2)

The dimensional formula [ML^(-1)T^(-2)] is for the quantity

The dimension ML^(0)T^(-2) corresponds to .