Home
Class 12
MATHS
If x^p y^q =(x+y)^(p+q) then dy/dx =...

If `x^p y^q =(x+y)^(p+q)` then `dy/dx = `

Promotional Banner

Similar Questions

Explore conceptually related problems

If x^py^q=(x+y)^(p+q) , then dy/dx= (a) x/y (b) y/x (c) x/(x+y) (d) y/(y+x)

If x^py^q=(x+y)^(p+q) then the value of (d^(2)y)/(dx^(2)) is (where p,q in N ) (A) 0 (B) -1 (C) 1(D) None of these

If x^(p)y^(q)=(x+y)^(p+q) , show that dy/dx=y/x .

x^(p)*y^(q) = (x+y)^(p+q) prove that dy/dx= y/x

If x^(p)y^(q)=(x+y)^(p+q) , prove that (dy)/(dx)=(y)/(x)

If x # y = (x + y)/(xy) , then the value of P # (q # r) for every p, q, in N :

If y = (1)/(1+x^( p-r) +x^(q-r)) +(1)/( 1+ x^(p-q) +x^(r-q) )+ (1) /( 1+x^(q-p) +x^(r-p)),then (dy)/(dx) =

If x=a cos q,y=b sin q, then dy/dx=