Home
Class 12
MATHS
int(dx)/((1+sqrt(x))sqrt((x-x^2)))is equ...

`int(dx)/((1+sqrt(x))sqrt((x-x^2)))`is equal to (a)`(1+sqrt(x))/((1-x)^2)+c` (b) `(1+sqrt(x))/((1+x)^2)+c` (c)`(1-sqrt(x))/((1-x)^2)+c` (d) `(2(sqrt(x)-1))/(sqrt((1-x)))+c`

Promotional Banner

Similar Questions

Explore conceptually related problems

int(x)/(sqrt(1+x^(2)+sqrt((1+x^(2))^(3))))dx is equal to

int(sqrt(x-1))/(x sqrt(x+1))dx " is equal to "

int({x+sqrt(x^(2)+1)})^n/(sqrt(x^(2)+1))dx is equal to

intsqrt(x/(1-x))\ dx is equal to (a) sin^(-1)sqrt(x)+C (b) sin^(-1){sqrt(x)-sqrt(x(1-x))}+C (c) sin^(-1){sqrt(x(1-x))}+C (d) sin^(-1)sqrt(x)-sqrt(x(1-x))+C

int(sqrt(1-x^(2))+1)/(sqrt(1-x)+1/sqrt(1+x))dx

int(sqrt(1-x^(2))+sqrt(1+x^(2)))/(sqrt(1-x^(4)))dx=

int(x^2-1)/(x^3sqrt(2x^4-2x^2+1))dx is equal to (a) (sqrt(2x^4-2x^2+1))/(x^3)+C (b) (sqrt(2x^4-2x^2+1))/x+C (c) (sqrt(2x^4-2x^2+1))/(x^2)+C (d) (sqrt(2x^4-2x^2+1))/(2x^2)+C

The value of integral inte^x(1/(sqrt(1+x^2))+(1-2x^2)/(sqrt((1+x^2)^5)))dx is equal to (a)e^x(1/(sqrt(1+x^2))+x/(sqrt((1+x^2)^3)))+c (b)e^x(1/(sqrt(1+x^2))-x/(sqrt((1+x^2)^3)))+c (c)e^x(1/(sqrt(1+x^2))+x/(sqrt((1+x^2)^5)))+c (d)none of these

d/(dx)[cos^(-1)(xsqrt(x)-sqrt((1-x)(1-x^2)))]= 1/(sqrt(1-x^2))-1/(2sqrt(x-x^2)) (-1)/(sqrt(1-x^2))-1/(2sqrt(x-x^2)) 1/(sqrt(1-x^2))+1/(2sqrt(x-x^2)) 1/(sqrt(1-x^2)) 0 b. 1//4 c. -1//4 d. none of these

y=tan^(-1)((sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2)))