Home
Class 12
MATHS
int(0)^(1)(e^(3x)+1)/(e^(x))dx...

`int_(0)^(1)(e^(3x)+1)/(e^(x))dx`

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate int_(0)^(4)(e^(x))/(1+e^(2x))dx

Evaluate int_(0)^(1)(e^(-x)dx)/(1+e^(x))

int_(0)^(log 2)(e^(x))/(1+e^(x))dx=

The value of the integral int_(-a)^(a)(e^(x))/(1+e^(x))dx is

int_(0)^(1)e^(2x)e^(e^(x) dx =)

int_(0)^(1)(dx)/(e^(x)+e^(-x))

Evaluate the integral as limit of sum: int_(0)^(1) (e^(2x)-e^(x) +x) dx

Find the value of integral A=int_(-a)^(a)(e^(x))/(1+ e^x)dx

int_(-1)^(1) (e^(|x|))/(1+a^(x))dx

int_(0)^(1) x e^(x) dx=1