Home
Class 11
MATHS
1+tan^(2)A(tan^(2)A+1)=1...

`1+tan^(2)A(tan^(2)A+1)=1`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A=30^(@) , verify that (i) sin2A=(2tanA)/(1+tan^(2)A) (ii) cos2A=(1-tan^(2)A)/(1+tan^(2)A) (iii) tan2A=(2tanA)/(1-tan^(2)A)

Prove that (1+tan^(2)A)/(1+cot^(2)A)=((1-tan A)/(1-cot A))^(2)=tan^(2)A

((1+tan^(2)A)/(1+cot^(2)A))=((1-tan A)/(1-cot A))^(2)=tan^(2)A

Show that : ((1+tan^(2)A)/(1+cot^(2)A))=((1-tan A)/(1-cot A))^(2)=tan^(2)A

sec^(-1)((1+tan^(2)x)/(1-tan^(2)x))

theta = tan^(-1) (2 tan^(2) theta) - tan^(-1) ((1)/(3) tan theta) " then " tan theta=

Solve for x; tan^(-1)(1/2)+tan^(-1)2=tan^(-1)x

If (A)/(2) and A are not an odd multiple of (pi)/(2) then tan A= (2tan A)/(1-tan^(2)A) (2tan A)/(1+tan^(2)A) (2tan (A/2))/(1-tan^(2)(A/2))

Evaluate 2tan^(-1)(1/2)+tan^(-1)(1/4)