Home
Class 11
MATHS
Prove that lim(n rarr oo)[(1^(2)+2^(2)+...

Prove that ` lim_(n rarr oo)[(1^(2)+2^(2)+3^(2)+cdots+n^(2))/(n^(3))]=(1)/(3)`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n rarr oo)2^(1/n)

lim_(n rarr oo)3^(1/n) equals

lim_(n rarr oo)((1+1/(n^(2)+cos n))^(n^(2)+n) equals

lim_(n to oo)[(n+1)/(n^(2)+1^(2))+(n+2)/(n^(2)+2^(2))+....+(1)/(n)]

lim_(n to oo){(1^(m)+2^(m)+3^(m)+...+ n^(m))/(n^(m+1))} equals

lim_(n->oo)(1^(99)+2^(99)+3^(99)+.......n^(99))/(n^(100))=

The value of lim_(nto oo)(1^(3)+2^(3)+3^(3)+……..+n^(3))/((n^(2)+1)^(2))

lim_(nrarroo) [(1)/(n)+(n^(2))/((n+1)^(3))+(n^(2))/((n+2)^(3))+...+(1)/(8n)] is equal to

lim_(n rarr oo)(3+sqrt(n))/(sqrt(n))

1. lim_(n rarr oo)(n+n^(2)+n^(3)+...*n^(n))/(1^(n)+1^(n)+3^(n)+cdots+n^(n))