Home
Class 12
MATHS
If A=1/3[(1,2,2),(2,1,-2),(-2,2,-1)] , t...

If `A=1/3[(1,2,2),(2,1,-2),(-2,2,-1)]` , then show that `A^(-1) = A^(T)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If 3A=[[1,-2,2],[-2,1,2],[-2,-2,-1]] then show that A^(-1)=A'

If A=|{:(1,2,2),(2,1,2),(2,2,1):}| , then show that A^(2)-4A-5I_(3)=0 . Hemce find A^(-1) .

If A=[(-1,-2,-2 ),(2, 1,-2),( 2,-2 ,1)] , show that a d j A=3A^T .

if A=[{:(1,-1,1),(2,1,-1),(-1,-2,2):}] then show that A^(-1) Does not exist.

If A=[[-1,-2,-2],[2,1,-2],[2,-2,1]], show that 3adjA=A^T.

If A=|{:(-3,-1,2),(2,2,-3),(1,3,-1):}| , then show that : A.(adj.A)=(adj.A). A.

If A=[{:(,1,1,2),(,0,2,1),(,1,0,2):}] show that A^(3)=(5A-I)(A-I)

If A=[[-1,-2,-2],[2,1,-2],[2,-2,1]] then show that the adjoint of A is 3A^(T) .Find A^(-1)

If A=[(1,2,3),(2,1,2),(2,2,3)]B=[(1,2,2),(-2,-1,-2),(2,2,3)] and C=[(-1,-2,-2),(2,1,2),(2,2,3)] then find the value of tr. (A+B^(T)+3C) .