Home
Class 11
MATHS
If a^2/(b+c)= b^2/(c+a)=c^2/(a+b) =1 the...

If `a^2/(b+c)= b^2/(c+a)=c^2/(a+b) =1` then show that `a/(1+a)+b/(1+b)+c/(1+c)=1`

Promotional Banner

Similar Questions

Explore conceptually related problems

Given, a^(2) =b+c, b^(2)=c + a " & " c^(2) = a + b or (a^(2))/(b+c) = (b^(2))/(c+a) = (c^(2))/(a+b)=1 find (a)/(1+a) + (b)/(1+b) + (c )/(1+c) = ?

If (b-c)^(2),(c-a)^(2),(a-b)^(2) are in A.P.then show that (1)/(b-c),(1)/(c-a),(1)/(a-b) are in A.P.

Given, a^(2) =b+c, b^(2)=c + a " & " c^(2) = a + b or (a^(2))/(b+c) = (b^(2))/(c+a) = (c^(2))/(a+b)=1 find (1)/(1+a) + (1)/(1+b) + (1)/(1 + c)= ?

if the roots of the equation a(b-c)x^(2)+b(c-a)x+c(a-b)=0 are equal then show that (2)/(b)=(1)/(a)+(1)/(c)

if the roots of the equation a(b-c)x^(2)+b(c-a)x+c(a-b)=0 are equal then show that (2)/(b)=(1)/(a)+(1)/(c)