Home
Class 12
MATHS
tan^(-1)(a)/(b)-tan^(-1)(a-b)/(a+b)=(pi)...

`tan^(-1)(a)/(b)-tan^(-1)(a-b)/(a+b)=(pi)/(4)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Write the value of tan^(-1)(a/b)-tan^(-1)((a-b)/(a+b))

In a triangle A B C , , if C is a right angle, then tan^(-1)(a/(b+c))+tan^(-1)(b/(c+a))= (a) pi/3 (b) pi/4 (c) (5pi)/2 (d) pi/6

tan^(- 1)(a/x)+tan^(- 1)(b/x)=pi/2 then x=

tan^(- 1)(a/x)+tan^(- 1)(b/x)=pi/2 then x=

tan^(-1)(x/y)-tan^(-1)((x-y)/(x+y)) is (A) pi/2 (B) pi/3 (C) pi/4 (D) pi/4 or (3pi)/4

If tan^(-1)(a/x)+tan^(-1)(b/x)+tan^(-1)(c /x)+tan^(-1)(d/x)=(pi)/(2) then x^(4)-x^(2)(Sigma ab)+abcd=

In a A B C , , if C is a right angle, then tan^(-1)(a/(b+c))+tan^(-1)(b/(c+a))=

tan^(-1)((1)/(1+2))+tan^(-1)((1)/(1+6))+tan^(-1)(k)=tan^(-1)4 -(pi)/(4) then k is

If tan^(-1) . b/(c+a) + tan^(-1) . (c)/(a + b) = pi/4 where a, b, c , are the sides of Delta ABC",then" Delta ABC is

tan^(-1)(x/y)-tan^(-1)(x-y)/(x+y) is equal to(A) pi/2 (B) pi/3 (C) pi/4 (D) (-3pi)/4