Home
Class 12
MATHS
Find the slopes of the tangent and the n...

Find the slopes of the tangent and the normal to the following curves at the indicated points: `y=sqrt(x^3)a tx=4` `y=sqrt(x^3)a tx=9` `y=x^3-xa tx=2` `y=2x^2+3sinxa tx=0` `x=a(theta-sintheta),y=a(1+costheta)a ttheta=-pi/2` `x=acos^3theta,y=asin^3thetaa ttheta=pi/4` `x=a(theta-s intheta),y=a(1-costheta)a ttheta=pi/2` `y=(sin2x+cotx+2)^2a tx=pi/2` `x^2+3y+y^2=5a t(1,1)` `x y=6a t(1,6)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the slopes of the tangent and the normal to the curve x=a(theta-sintheta) , y=a(1+costheta) at theta=-pi//2

Find the slopes of the tangent and the normal to the curve x=a(theta-sintheta),\ \ y=a(1-costheta) at theta=pi//2

Find the slopes of the tangent and the normal to the curve x=a(theta-sintheta) , y=a(1+costheta) at theta=-pi//2

Find the slopes of the tangent and the normal to the curve x=a(theta-sintheta),\ \ y=a(1-costheta) at theta=pi//2

The slope of the normal to the curve x=a(theta-sintheta),y=a(1 -costheta) at theta=pi//2 is

Find (d^2y)/(dx^2) : x = a(theta - sintheta), y = a(1 - costheta) at theta = (pi)/2 .

Find the slope of the normal to the curve x=acos^3theta,y=asin^3theta" at "theta=pi/4

If x=a(theta+sintheta), y=a(1-costheta) then prove that at theta=pi/2, y''=1/a .

Find the slope of the tangent to the curve: x = a(theta-sintheta), y = a(1-costheta) at theta = pi/2

Find the slope of the tangent to the curve: x=acos^3theta, y = asin^3 theta at theta = pi/4