Home
Class 12
MATHS
|[2x-1,x^2-x+1],[(x+1),2x+1]|...

`|[2x-1,x^2-x+1],[(x+1),2x+1]|`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) =|(1, x, x+1),(2x, x(x-1), x(x+1)), (3x(x-1), 2(x-1)(x-2), x(x+1)(x-1))| then what is f(-1) +f(0) +f(1) equal to ?

solve for x, [[x^2,1],[2,x]] + [[2x,2],[-1,2]] = [[-1,3],[1,1]]

If a,b,c are in A.P .and f(x)=|[x^2+x+a+1, x^2+1, 1] , [2x^2+x+b-1, 2x^2-1, 1] , [3x^2+x+c-2, 3x^2-2, 1]| then f'(x) is

If f(x)=|[1,2(x-1),3(x-1)(x-2)],[x-1,(x-1)(x-2),(x-1)(x-2)(x-3)],[x,x(x-1),x(x-1)(x-2)]| . Then, the value of f(2020) is

(2x-1)/(2x+1)+(2x+1)/(2x-1)=6

The factor of x^8 + x^4 +1 are (A) (x^4 + 1 - x^2), (x^2 +1 +x), (x^2 + 1 - x ) (B) x^4 + 1 -x^2 , (x^2 - 1 + x), (x^2 +1 + x) (C ) (x^4 - 1 + x^2, (x^2 - 1 + x), (x^2 + 1 + x) (D) (x^4 -1 + x^2), (x^2 + 1 - x), (x^2 + 1 +x)

prove that |(1,x,x+1),(2x,x(x-1),x(x+1)),(3x(1-x),x(x-1)(x-2),x(x+1)(x-1))|=6x^(2)(1-x^(2))

[[3x^(2),3x,1x^(2)+2x,2x+1,12x+1,x+2,1]]=(x-1)^(3)

Prove that sqrt(x^2+2x+1)-sqrt(x^2-2x+1)={-2, x 1

(2x^(3)-x^(2)+x+1)-:(2x+1)