Home
Class 11
MATHS
frac{(1+i)^8(1-isqrt3)^6}{(1-i)^6(1+isqr...

`frac{(1+i)^8(1-isqrt3)^6}{(1-i)^6(1+isqrt3)^9}=`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of (1+isqrt(3))/(1-isqrt(3))^(6)+(1-isqrt(3))/(1+isqrt(3))^(6) is

((-1+isqrt(3))/2)^6+((-1-isqrt(3))/2)^6+((-1+isqrt(3))/2)^5+((-1-isqrt(3))/2)^5 is equal to

If A=[[(-1+isqrt(3))/(2i),(-1-isqrt(3))/(2i)],[(1+isqrt(3))/(2i),(1-isqrt(3))/(2i)]] , i = sqrt(-1) and f (x) = x^(2) + 2, then f(A) equals to

The principal argument of (1-isqrt(3))/(1+isqrt(3))

For z_(1)=""^(6)sqrt((1-i)//(1+isqrt(3))),z_(2)=""^(6)sqrt((1-i)//(sqrt(3)+i)) , z_(3)= ""^(6)sqrt((1+i) //(sqrt(3)-i)) , prove that |z_(1)|=|z_(2)|=|z_(3)|

Find the value of : (1+ isqrt(3))^(2) + (1-isqrt(3))^(2)

If i=sqrt-1, then 4+5(-1/2+(isqrt3)/2)^334+3(-1/2+(isqrt3)/2)^365 is equal to (1) 1-isqrt3 (2) -1+isqrt3 (3) isqrt3 (4) -isqrt3

Prove that ((-1 + isqrt3)/(2))^(n) + ((-1-isqrt3)/(2))^(n) is equal to 2 if n be a multiple of 3 and is equal to -1 if n be any other integer

For n=6k, k in z, ((1-isqrt(3))/(2))^(n)+((-1-isqrt(3))/(2))^(n) has the value

The argument of (1-isqrt(3))/(1+isqrt(3)) , is