Home
Class 12
MATHS
int(e^(x)-1)/(e^(x)+1)dx...

`int(e^(x)-1)/(e^(x)+1)dx`

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate: int(e^(2x)-1)/(e^(2x)+1)dx

Column I, a) int(e^(2x)-1)/(e^(2x)+1)dx is equal to b) int1/((e^x+e^(-x))^2)dx is equal to c) int(e^(-x))/(1+e^x)dx is equal to d) int1/(sqrt(1-e^(2x)))dx is equal to COLUMN II p) x-log[1+sqrt(1-e^(2x)]+c q) log(e^x+1)-x-e^(-x)+c r) log(e^(2x)+1)-x+c s) -1/(2(e^(2x)+1))+c

int(e^(x)dx)/(e^(x)-1)

int(e^(2x)+1)/(e^(2x)-1)dx=

int(e^(-x))/(1+e^(x))dx=

The value of int sqrt((e^(x)-1)/(e^(x)+1))dx

Evaluate: int(e^(x)+1)/(e^(x)+x)dx

int sqrt((e^(x)-1)/(e^(x)+1))dx is equal to

int (e^(2x)-1)/(e^(2x)+1) dx=?

Evaluate: (i) int xe^(x)^^2dx (ii) int(e^(2x))/(1+e^(x))dx