Home
Class 12
MATHS
x(dy)/(dx)-y=log x,y(1)=0...

`x(dy)/(dx)-y=log x,y(1)=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x^(y) y^(x)=5 , then show that (dy)/(dx)= -(log y + (y)/(x))/(log x + (x)/(y))

If y log x= x-y , prove that (dy)/(dx)= (log x)/((1+log x)^(2))

If y=(x-1)log(x-1)-(x+1)log(x+1), prove : (dy)/(dx)=log((x-1)/(1+x))

If y=(x-1)log(x-1)-(x+1)log(x+1) , prove that (dy)/(dx)=log((x-1)/(1+x))

If (dy)/(dx)-y log_(e) 2 = 2^(sin x)(cos x -1) log_(e) 2 , then y =

The solution of the differential equaton (dy)/(dx)=(x log x^(2)+x)/(sin y+ycos y) , is

Solve (dy)/(dx)+(y)/(x)=log x.

Solve the differential equation x(dy)/(dx)=y(log y - log x +1) .

If y=a^x^a^x^...^(((((oo))))) , then prove that (dy)/(dx)=(y^2(log)_e y)/(x(1-y(log)_e x(log)_e y)

If y=a^x^a^x^...^(((((oo))))) , then prove that (dy)/(dx)=(y^2(log)_e y)/(x(1-y(log)_e x(log)_e y)