Home
Class 12
MATHS
int (e^2)^(e^4)(dx)/(x*log x)...

`int_ (e^2)^(e^4)(dx)/(x*log x)`

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(1//e)^(e) (dx)/(x(log x)^(1//3))

int_(1)^(e^(2))(dx)/(x(1+log x)^(2))=

Evaluate: int_e^(e^2) (dx)/(x log x)

If I_(1)=int_(e)^(e^(2))(dx)/(ln x) and I_(2)=int_(1)^(2)(e^(x))/(x)dx

Evaluate :int_(e)^(e^(2)){(1)/(log x)-(1)/((log x)^(2))}dx

int_ (e^(e))^(e^(e^(e))) (dx)/(x ln x*ln (ln x) ln (ln (ln x)))

int_ (e^(e))^(e^(e^(e))) (dx)/(x ln x*ln (ln x)*ln (ln (ln x)))

Given int_(1)^(2) e^(x^(2))dx=a , the value of int_(e )^(e^(4)) sqrt(log_(e )x)dx , is

If I _(1) = int _(e) ^(e ^(2)) (dx )/( ln x ) and I _(2) = int _(1) ^(2) (e ^(x))/(x) dx, then