Home
Class 12
MATHS
lim(n->oo) [frac{1}{n+1}+frac{1}{n+2}+fr...

`lim_(n->oo) [frac{1}{n+1}+frac{1}{n+2}+frac{1}{n+3}+.........+frac{1}{n+n}]=`

Promotional Banner

Similar Questions

Explore conceptually related problems

3frac{1}{13}+1frac{4}{13}+2frac{3}{13}

lim_(n->oo) nsin(1/n)

\lim _{x\to 0}(\frac{1}{e^x-1}-\frac{1}{x}\)

lim_(n rarr oo)2^(1/n)

if y= x^m then Y n is equal to: (A) frac{m!}{m-n!} x^(m-n) (B) frac{m!}{n-m!} x^(m-n) (C) frac{n!}{m+n!} x^(m+n) (D) frac{n!}{n-m!} x^(m-n)

lim_(n->oo)2^(n-1)sin(a/2^n)

7. lim_(n->oo) (2^(1/n)-1)/(2^(1/n)+1)

lim_(n rarr oo)3^(1/n) equals

Lim_(n->oo)[1/n^2 * sec^2 (1/n^2)+2/n^2 * sec^2 (4/n^2)+..............+1/n * sec^2 1]

lim_(x->oo)(1-x+x.e^(1/n))^n