Home
Class 11
MATHS
Prove that (logx^2-logx).log(1/x)+(logx)...

Prove that `(logx^2-logx).log(1/x)+(logx)^2=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x^y=e^(x-y), Prove that (dy)/(dx)=(logx)/((1+logx)^2)

prove that x^(logy-logz).y^(logz-logx).z^(logx-logy)=1

If x^y=e^(x-y) , prove that (dy)/(dx)=(logx)/(1+logx)^2

If x^y=e^(x-y) , prove that (dy)/(dx)=(logx)/((1+logx)^2)

Evaluate: int(log(logx)+1/((logx)^2))dx

Evaluate: int(log(logx)+1/((logx)^2))dx

int(dx)/(x.logx.log(logx))=

Solve 4^(log_(2)logx)=logx-(logx)^(2)+1 (base is e).

Solve the equation (1-2(2logx)^(2))/(logx-2(logx)^(2))=1

int(logx/(1+logx)^2)dx