Home
Class 11
MATHS
(b) If w is cubes roots of unity then (1...

(b) If `w` is cubes roots of unity then `(1+w^2+w^4+w^6)(1+w+w^3+w^5)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If omega is a cube root of unity, then 1+ omega^(2)= …..

If omega is a cube root of unity, then 1+omega = …..

If omega is a cube root of unity, then omega^(3) = ……

If w is a complex cube root of unity then show that ( 2 − w ) ( 2 − w^2 ) ( 2 − w^10 ) ( 2 − w^11 ) = 49 ?

If omega is a cube root of unity, then omega + omega^(2)= …..

If w ne 1 is a cube root of unity and Delta=|{:(x+w^(2),w,1),(w,w^(2),1+x),(1,x+w,w^(2)):}|=0 , then value of x is

If omega is a cube root of unity , then |(x+1 , omega , omega^2),(omega , x+omega^2, 1),(omega^2 , 1, x+omega)| =

If w is a complex cube root of unity. Show that |[1,w, w^2],[w, w^2, 1],[w^2, 1,w]|=0 .

If omega(ne1) is a cube root of unity, then (1-omega+omega^(2))(1-omega^(2)+omega^(4))(1-omega^(4)+omega^(8)) …upto 2n is factors, is

If omega is a cube root of unity, then |(1-i,omega^2, -omega),(omega^2+i, omega, -i),(1-2i-omega^2, omega^2-omega,i-omega)| =