Home
Class 11
MATHS
If w is cube roots of unity then (2-w)(2...

If `w` is cube roots of unity then `(2-w)(2-w^2)(2-w^10)(2-w^11)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If omega is a cube root of unity, then 1+ omega^(2)= …..

If omega is a cube root of unity, then omega^(3) = ……

If w is a complex cube root of unity then show that ( 2 − w ) ( 2 − w^2 ) ( 2 − w^10 ) ( 2 − w^11 ) = 49 ?

If w ne 1 is a cube root of unity and Delta=|{:(x+w^(2),w,1),(w,w^(2),1+x),(1,x+w,w^(2)):}|=0 , then value of x is

If omega is a complex cube root of unity, then ((1+i)^(2n)-(1-i)^(2n))/((1+omega^(4)-omega^(2))(1-omega^(4)+omega^(4)) is equal to

If omega is a cube root of unity, then 1+omega = …..

If omega(ne1) is a cube root of unity, then (1-omega+omega^(2))(1-omega^(2)+omega^(4))(1-omega^(4)+omega^(8)) …upto 2n is factors, is

If omega is a complex cube root of unity then (1-omega+omega^2)(1-omega^2+omega^4)(1-omega^4+omega^8)(1-omega^8+omega^16)

If omega is a complex cube root of unity, then (1-omega+omega^(2))^(6)+(1-omega^(2)+omega)^(6)=

If omega is a cube root of unity, then |(1-i,omega^2, -omega),(omega^2+i, omega, -i),(1-2i-omega^2, omega^2-omega,i-omega)| =