Home
Class 7
MATHS
Find the sum :- a-b+ab,b-c+bc,c-a+ac....

Find the sum :- `a-b+ab,b-c+bc,c-a+ac`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the product: (a-b-c)(a^(2)+b^(2)+c^(2)+ab+ac-bc)

If a,b and c are in H.P.,then the value of ((ac+ab-bc)(ab+bc-ac))/((abc)^(2)) is

Sum of a – b + ab, b + c – bc and c – a – ac is

Find the value of det[[1,a,a^(2)-bc1,b,b^(2)-ac1,c,c^(2)-ab]]

If a,b, and c are in H.P.then th value of ((ac+ab-bc)(ab+bc-ac))/((abc)^(2)) is ((a+c)(3a-c))/(4a^(2)c^(2)) b.(2)/(bc)-(1)/(b^(2)) c.(2)/(bc)-(1)/(a^(2)) d.((a-c)(3a+c))/(4a^(2)c^(2))

If V is the volume of the parallelopiped having three coterminus edges as a,b and c,then the volume of the parallelopiped having the edges as alpha=(a.a)a+(a.b)c;beta=(a.b)a+(b.b)b+(b.c)b;gamma=(a.c)a+(b.c)b+(c.

Prove that identities: |[-bc,b^2+bc,c^2+bc],[a^2+ac,-ac,c^2+ac],[a^2+ab,b^2+ab,-ab]|=(a b+b c+a c)^3

If the given vectors (-bc,b^2+bc,c^2+bc)(a^2+ac,-ac,c^2+ac) and (a^2+ab,b^2+ab,-ab) are coplanar, where none of a,b and c is zero then

If a, b and c are distinct positive real numbers such that Delta_(1) = |(a,b,c),(b,c,a),(c,a,b)| and Delta_(2) = |(bc - a^2, ac -b^2, ab - c^2),(ac - b^2, ab - c^2, bc -a^2),(ab -c^2, bc - a^2, ac - b^2)| , then