Home
Class 10
MATHS
Prove that sin^(6)(theta/2)+cos^(6)(thet...

Prove that `sin^(6)(theta/2)+cos^(6)(theta/2)=(sin^(2)(theta/2))^(3)+(cos^(2)(theta/2))^(3)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that sin^(6)theta+cos^(6)theta=1-(3)/(4)sin^(2)2 theta

Prove that sin^(6)theta+cos^(6)theta=1-3sin^(2)theta cos^(2)theta

Prove that sin^(6)theta+cos^(6)theta=1-3sin^(2)theta.cos^(2)theta.

Prove that: sin^(6) theta + cos^(6) theta =1 - 3 sin^(2) theta cos^(2) theta

Prove that cos^(6)theta+sin^(6)theta=1-3sin^(2)theta cos^(2)theta

sin^(6)theta+cos^(6)theta+3sin^(2)theta cos^(2)theta=1

int(sin^(6)theta+cos^(6)theta)/(sin^(2)theta cos^(2)theta)d theta=

Prove : 2(sin^(6)theta+cos^(6)theta)-3(sin^(4)theta+cos^(4)theta)+1=0 .

What is ( sin ^(6) theta - cos ^(6) theta )/( sin ^(2) theta - cos ^(2) theta) equal to ?

Prove the following identities: 2(sin^(6)theta+cos^(6)theta)-3(sin^(4)theta+cos^(4)theta)+1=0sin^(6)theta+cos^(6)theta+3sin^(2)theta cos^(2)theta=1(sin^(8)theta-cos^(8)theta)=(sin^(2)theta-cos^(2)theta)(1-2sin^(2)theta cos^(2)theta)