Home
Class 12
MATHS
(i) Find lim(x->oo) x/e^x...

(i) Find `lim_(x->oo) x/e^x`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x->oo) xsin(2/x)

lim_(x->oo)[sinx/x]

lim_(x->oo)sinx/x =

lim_(x->oo) (sinx/x) =

lim_(x->oo)2^xsin(a/2^x)

lim_(x->oo) (x-sqrt(x^2+x))

lim_(x->oo)(1-x+x.e^(1/n))^n

Let f(x)=(log_e(x^2+e^x))/(log_e(x^4+e^2x)) . If lim_(xrarr oo) f(x)=l and lim_(xrarr-oo)f(x)=m , then

Solve lim_(x->oo)(e^x-e^-x)/(e^x-e^-x)

If f(x) = lim_(n->oo) tan^(-1) (4n^2(1-cos(x/n))) and g(x) = lim_(n->oo) n^2/2 ln cos(2x/n) then lim_(x->0) (e^(-2g(x)) -e^(f(x)))/(x^6) equals