Home
Class 12
MATHS
d/dxsin[cos(x^2)]...

`d/dxsin[cos(x^2)]`

Promotional Banner

Similar Questions

Explore conceptually related problems

d/(dx)[cos(1-x^2)^2]=

(d)/(dx)(cos (x/2))= (A) (1)/(2)sin(x)/(2) , (B) -(1)/(2)cos(x)/(2) (C) -(1)/(2)sin(x)/(2) , (D) -sin(x)/(4)

(d)/(dx)[cos^(2)x(3-4cos^(2)x)^(2)]+(d)/(dx)[sin^(2)(3-4sin^(2)x)^(2)]=

Differentiate sin(cos(x^(2))) with respect to x

(d)/(dx)[sin^(-1){cos(x^(2)-2)}]=

(d)/(dx)[(1+cos2x+sin2x)/(1+sin2x-cos2x)]=

(d)/(dx)[3(sin^(2)x+cos^(2)x)]=

(d)/(dx)(sin^(2)x+cos^(2)x) =

(d)/(dx)[log(cos h(2x))]=

The differentiation of sin x with respect to x is cos x* i.e.(d)/(dx)(sin x)=cos x