Home
Class 12
MATHS
y-xdy/dx=a(y^2+dy/dx)...

`y-xdy/dx`=`a(y^2+dy/dx)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve y-x(dy)/(dx)=a(y^(2)+(dy)/(dx))

Solve the following differential equations: (dy)/(dx)=1+x+y+x y (ii) y-x(dy)/(dx)=a(y^2+(dy)/(dx))

Solve the following differential equations: (dy)/(dx)=1+x+y+x y (ii) y-x(dy)/(dx)=a(y^2+(dy)/(dx))

Solve the differential equation y-x(dy)/(dx)=a(y^(2)+(dy)/(dx)) .

Solve: x+y dy/dx=(a^2((x dy/dx-y))/(x^2+y^2))

x dy/dx+y=y^2 logx

If y=xlog(x/(a+b x)),t h e nx^3(d^2y)/(dx^2)= (a) x(dy)/(dx)-y (b) (x(dy)/(dx)-y)^2 y(dy)/(dx)-x (d) (y(dy)/(dx)-x)^2

sinx dy/dx +y=y^2

If y=x^(x^(x...oo)) then prove that xdy/dx=(y^2)/(1-ylogx)

y^2+x^2(dy)/(dx)=x y(dy)/(dx)