Home
Class 11
MATHS
cot^(-1)(a-1)=cot^(-1)(a^2-x+1)+cot^(-1)...

`cot^(-1)(a-1)=cot^(-1)(a^2-x+1)+cot^(-1)x`

Promotional Banner

Similar Questions

Explore conceptually related problems

x cot^(-1)x

If cot^(-1) ( alpha) = cot^(-1)(2) + cot^(-1)(8) + cot^(-1)(18) + cot ^(-1)(32) + "…………" upto 100 terms , then alpha is :

If x!=n and cot^(-1)x+cot^(-1)(n^(2)-x+1)=cot^(-1)(n-1) then x=

cot^(-1)x+cot^(-1)(n^(2)-x+1)=cot^(-1)(n-1)

2tan(tan^(-1)(x)+tan^(-1)(x^(3))), where x in R-{-1,1} is equal to (2x)/(1-x^(2))t(2tan^(-1)x)tan(cot^(-1)(-x)-cot^(-1)(x))tan(2cot^(-1)x)

If y=(tan^(-1)x-cot^(-1)x)/(tan^(-1)x+cot^(-1)x) then (dy)/(dx)=

int(tan^(-1)x-cot^(-1)x)/(tan^(-1)x+cot^(-1)x)dx equals

If: cot^(-1)alpha + cot^(-1)beta = cot^(-1) x , then: x=

cot(tan^(-1)x+cot^(-1)x)