Home
Class 12
MATHS
" "(dy)/(dx)=e^(2x)siny...

`" "(dy)/(dx)=e^(2x)siny`

Promotional Banner

Similar Questions

Explore conceptually related problems

(dy)/(dx)=(x+e^(2x))/(y)

Solution of differential equation cosy(dy)/(dx)=e^(x+siny)+x^(2)e^(siny) is

if the differential equation of a curve, passing through (0,-(pi)/(4)) and (t,0) is cosy((dy)/(dx)+e^(-x))+siny(e^(-x)-(dy)/(dx))=e^(e^(-x)) then find the value of t.e^(e^(-1))

Solve: (dy)/(dx)+2y=e^(-x)

Solve: (dy)/(dx)=(1)/(sin^(4)x+cos^(4)x) (ii) (dy)/(dx)=(3e^(2x)+3e^(4x))/(e^(x)+e^(-x))

Solve the following differential equations (dy)/(dx)=(1)/(y+siny)

If e^(x)+e^(y)=e^(x+y), prove that (dy)/(dx)=-(e^(x)(e^(y)-1))/(e^(y)(e^(x)-1)) or,(dy)/(dx)+e^(y-x)=0

Solve the following differential equations (dy)/(dx)=sinx*siny