Home
Class 12
MATHS
I=int(sqrt(n)-(1)/(sqrt(n)))dx...

`I=int(sqrt(n)-(1)/(sqrt(n)))dx`

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate: (i) int(1-x)sqrt(x)dx (ii) int(sqrt(x)+(1)/(sqrt(x)))^(2)dx

int(x^(n-1))/(sqrt(1+4x^(n)))dx

"int((a+sqrt(x))^(n))/(sqrt(x))dx,n!=-1

int((a+sqrt(x))^(n))/(sqrt(x))dx,n!=-1

Evaluate: (i) int((1+sqrt(x))^(2))/(sqrt(x))dx (ii) int sqrt(1+e^(x))e^(x)dx

If I=int(sqrt(cotx)-sqrt(tanx))dx, then I equals

(i)int(1)/(sqrt(x+2))dx

lim_(n rarr oo)(sin(1)/(sqrt((n))))((1)/(sqrt(n+1)))^(+(1)/(sqrt(n+2))+(1)/(sqrt(n+2)))

The value of I=int_(-sqrt(3)/2)^(sqrt(3)/2)(dx)/((1-x)sqrt(1-x^(2))) is

I=int(1)/(x-sqrt(x))dx