Home
Class 11
MATHS
solve a^2cotA+b^2cotB+c^2cotC...

solve
`a^2cotA+b^2cotB+c^2cotC`

Promotional Banner

Similar Questions

Explore conceptually related problems

In DeltaABC , a^(2),b^(2),c^(2) are in A.P. Prove that cotA, cotB, cotC are also in A.P.

If A+B+C=pi and A, B, C are acute positive angles and cotA cotB cotC = k, then

In a triangle ABC, if sin A sin (B-C)= sin c sin (A-B) , then prove that cotA, cotB, CotC are in AP.

If A+B+C=pi , prove that: cotB cotC + cotC cotA +cotA + cotA cotB=1 .

If A+B+C = pi , prove that : cotAcotBcotC=cotA+cotB +cotC-cosecAcosecBcosecC.

In a triangle A+B+C=90 then prove that cotA+cotB+cotC=cotAcotBcotC

In a triangle ABC, if cotA :cotB :cotC = 30: 19 : 6 then the sides a, b, c are

In DeltaABC if sinA.sin(B-C)= sinC.sin(A-B),then-(A!=B!=C) (A) tanA, tanB, tanC are in arithmetic progression (B) cotA, cotB, cotC are in arithmetic progression (C) cos2A, cos2B, cos2C are in arithmetic progression (D) sin2A. sin2B. sin2C are in arithmetic progression

If A+B+C=pi/2 , show that : cotA+cotB+cotC=cotA cotB cotC

If a^(2),b^(2) and c^(2) are in AP, then cotA, cotB and cotC are in