Home
Class 11
MATHS
sin^2(theta/2)-sin(theta/2)+1/4=0...

`sin^2(theta/2)-sin(theta/2)+1/4=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

(b) sin^(2)theta-(1)/(2)sin theta=0

There exist a value of theta between 0 and 2pi that satisfies the equaition sin^(4) theta-2sin^(2) theta+ 1=0

If sin theta+csc theta=2, then the value of sin(theta)/(16)sin(theta)/(8)sin(theta)/(4)sin(theta)/(2)sin2 theta is 1 b.(1)/(sqrt(2)) c.-(1)/(sqrt(2)) d.0

There exists a value of theta between 0 and 2 pi that satisfies the equation sin^(4)theta-2sin^(2)theta-1=0

If sin^(2)theta_(1)+sin^(2)theta_(2)+sin^(2)theta_(3)+sin^(2)theta_(4)=0 then which of the following cannot be the value of cos theta_(1)+cos theta_(2)+cos theta_(3)+cos theta_(4)

If thetain(0,2pi) then number of solution of equation (sin^(2)2theta+4sin^(4)theta-4sin^(2)thetacos^(2)theta)/(4-sin^(2)2theta-4sin^(2)theta)=(1)/(9)," is//are"

sin4 theta can be written as (a) 4sin theta(1-2sin^(2)theta)sqrt(1-sin^(2)theta)(b)2sin theta cos theta sin^(2)theta(c)4sin theta-6sin^(3)theta(d) None of the above

If cos theta+cos^(2)theta=1 then sin^(2)theta+2sin^(2)theta+sin^(2)theta=

sec^(2)theta-(sin^(2)theta-2sin^(4)theta)/(2cos^(4)theta-cos^(2)theta)=1