Home
Class 11
MATHS
prove that in triangle ABC sin(A+B)=sin...

prove that in triangle ABC
`sin(A+B)=sin(pi-C)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that in a triangle ABC , sin^(2)A - sin^(2)B + sin^(2)C = 2sin A *cos B *sin C .

Prove that in a triangle ABC , sinA/2 * sin B/2 *sin C/2 le 1/8 Also prove that equality holds if the triangle is equilateral.

Prove that in any Delta ABC,a sin(B-C)+b sin(C-A)+c sin(A-B)=0

In any triangle ABC, prove that following: b sin B-C sin C=a sin(B-C)

Prove that in triangle ABC,cos^(2)A+cos^(2)B-cos^(2)C=1-2sin A sin B cos C

In any triangle ABC,prove that a sin (B-C)+b sin(C-A)+c sin(A-B)=0

Prove that in any Delta ABC,a(sin B-sin C)+b(sin C-sin A)+c(sin A-sin B)=0

If cos A+cos B=4sin^(2)((C)/(2)) then prove that sides a,c,b of an triangle ABC in A.P.

In a Delta ABC, prove that (sin A+sin B)(sin B+sin C)(sin C+sin A)>sin A sin B sin C

In triangle ABC, prove that sin(B+C-A)+sin(C+A-B)+sin(A+B-C)=4sin A sin B sin C .