Home
Class 12
MATHS
I=int(sqrt(x)-(1)/(sqrt(x)))dx...

`I=int(sqrt(x)-(1)/(sqrt(x)))dx`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the integral int(sqrt(x)-1/(sqrt(x)))^2dx

Evaluate: (i) int(m/x+x/m+m^x+x^m+m x)\ dx (ii) int(sqrt(x)-1/(sqrt(x)))^2\ dx

int(sqrt (x)+1/sqrt (x))^2dx

Evaluate: (i) int(1-x)sqrt(x)\ dx (ii) int(sqrt(x)+1/(sqrt(x)))^2\ dx

int1/(sqrt(x+1)+sqrt(x))\ dx

int(sqrt(x-1))/(x sqrt(x+1))dx " is equal to "

Evaluate: int(sqrt(x))/(sqrt(x)-x^(1/3))dx

Evaluate: int(sqrt(x))/(sqrt(x)-x^(1/3))dx

int(sqrt(x))/(1+4sqrt(x^(3)))dx is equal to

int1/(sqrt(x+1)+sqrt(x))dx