Home
Class 12
MATHS
The value of lim(n->oo)(1+2+3+......+n)/...

The value of `lim_(n->oo)(1+2+3+......+n)/(1^2+2^2+3^2+........+n^2)` is:

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of lim_(n->oo) (1+2+3+.......+n)/n^2

Write the value of (lim)_(n->oo)(1+2+3+....+n)/(n^2)\

The value of lim_(n -> oo)(1.n+2.(n-1)+3.(n-2)+...+n.1)/(1^2+2^2+...+n^2)

The value of lim_(n->oo) (1^2 . n+2^2.(n-1)+......+n^2 . 1)/(1^3+2^3+......+n^3) is equal to

The value of ("lim")_(n->oo)[(n+1)^2 3-(n-1)^2 3] is_____

lim_(n->oo) (1.2+2.3+3.4+....+n(n+1))/n^3

lim_(n->oo)(1^2+2^2+3^2+..........+n^2)/n^3

lim(n->oo)(1^2+2^2+3^2+..........+n^2)/n^3

The value of (lim)_(n->oo){(1+2+3+...+n)/(n+2)-n/2}\ is a. 1 b . -1 c. 1/2 d. -1/2

The value of lim_(n->oo) [tan(pi/(2n)) tan((2pi)/(2n))........tan((npi)/(2n))]^(1/n) is