Home
Class 12
MATHS
I = int(0)^(1/2) 1/(sqrt(1-x^(2n))) dx ...

`I = int_(0)^(1/2) 1/(sqrt(1-x^(2n))) dx (n ge 1) `

Promotional Banner

Similar Questions

Explore conceptually related problems

Let I_(n) = int_(0)^(1//2)(1)/(sqrt(1-x^(n))) dx where n gt 2 , then

int_(0)^(1/sqrt2)(dx)/(sqrt(1-x^(2)))

int_(0)^(1)x^(2)sqrt(1-x^(2))dx=

If I=int_(0)^((1)/(2))(1)/(sqrt(1-x^(2n)))dx, then (A) I =(1)/(2)(C)I>=0(D) none of these

If I=int_(0)^(1//2) (1)/(sqrt(1-x^(2n)))dx then which one of the following is not true ?

If l=int_(0)^(1//2)(dx)/(sqrt(1-x^(2n))), n in N then (Where, [.] denotes G.I.F)

int(x^(n-1))/(sqrt(1+4x^(n)))dx

If l_(1)=int_(0)^(1)(dx)/(sqrt(1+x^(2))) and I_(2)=int_(0)^(1)(dx)/(|x|) then

Let I_(1)=int_(1)^(2)(1)/(sqrt(1+x^(2)))dx and I_(2)=int_(1)^(2)(1)/(x)dx .Then